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Introduction 

Ir. this paper we consider the problem of comparing the power of 

several features used in programming languages. For example, it is 

intuitively obvious to any programmer that recursion cannot, in general, 

be replaced by iteration with variables alone, but recursion can always 

be replaced by a pushdown stack. This indicates that a pushdown stack 

is at least as powerful as recursion, and that recursion is more powerful 

than iteration. Thus, from the iteration-vs-recursion standpoint we 

would say that ALGOL and PL/l are more powerful than FORTRM. The 

question is whether an intuitive notion of this kind can be understood 

in a formal way, and possibly elaborated upon to obtain a better under- 

standing of programming features and to enable us to compare their power. 

Unfortunately, the problem is not so simple. Consider, for example, 

the programming language of flowcharts, which contain ideal integer 

variables, i.e., their values can be arbitrarily large. The operations 

allowed in the flowchart are incrementing and decrementing variables by 

one, and testing to see if the value of a variable is zero. Such a 

simple language with just three variables can calculate all the "computable" 

functions, that is, all the partial recursive functions over the natural 

numbers. Thus if we add recursion or a pushdown stack to such a language, 

the power of the language will not be increased. 

This suggests that in order to carry out such a study, we must 

isolate in some way the effect of the programming features, whose power 

we wish to compare1, from the values being computed by the program. For 

this purpose we consider for each programming language a class of program 

Schemas; a program schema may use the control features of the language 

*—mfm*Km* 
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but the basic operations (constants, functions, and predicates) are 

used only as symbols without being specified. 

Related work has been done previously, among others, by Paterson and 

Hewitt [1970], Garland and Luckham [1971]^ Constable and Gries [1972], 

Plaisted [I972] and Chandra and Manna [1972]. The classes of schemas 

considered in these papers arc not identical to ours, but the differences 

are not significant. Details of the results presented in this paper 

can be found in Chandra's thesis [1975]. 

Part I.  The Class of Program Schemas 

A program schema is a program in which the data domain is not 

specified. In addition, the constants are indicated simply by the 

symbols a^a^ ... , the functions by f.,f , ... , and the predicates 

by Px'Pg' •'  • Thus a PrograjTi schema may be thought of as representing 

a family of real programs. A real program of the family is obtained by 

providing an interpretation for the symbols of the program schema, i.e., 

specifying a data domain and specifying data elements, function:; and 

predicates over the domain for the symbols a. , f. and p. , respectively. 

In our program schemas we use two kinds of variables: data 

variables, deno. 3d by y^y-,... , and boolean variables, denoted by 

w Boolean variables can have value either true or false. 

Data variables, on the other hand, have values from the data domain 

that is specified along with an interpretation for the schema. Corres- 

pondingly, we distinguish between two types of terms: data terms and 

boolean terms. A data term T can be built up using the data variables 

y. of the schema and the individual constants a. , and applying the 
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function symbols f. to them. The value of a data tem for a given 

interpretation is always a data element. A boolean term a is an 

atomic fomula or a negated atomic formula, where an atomic formula 

is a boolean value (true or false), a boolean variable 2 , or a 
i 

predicate test of the form    DI'T n-   ,\ TT   -. wie torra    p^, ...,Tk)   .    Under any interpretation, 

the value of    a    is a boolean value,     true or false . 

1-      Simple Algol-like Schemas 

The first class of schemas we consider is the class of Algol-like 

Schemas which can be constructed from statements of the following form 

(we use standard Algol-like notations): 

(i) start statement 

(ii)       halt statement 

(iii)     loop statement 

START(a) 

HALT(T) 

LOOP 

(iv)      assignment statementB       y.  - T 

or      z.  - cc 
i 

(v)   test statement if a then goto L, else goto L 

1^ and L2 here are labels. In addition we may use  begin ... end 

for grouping statements. 

_i       * ■ '- ■ * J 



The start statement, START(a) , initializes ail data variublec y, 

to the value a and all boolean variables to true . The halt statement, 

HALT(T) , outputs the data value of the term T . The loop statement, 

LOOP , causes the schema to loop forever. 

We use C()     to denote the class of all simple Algol-like Schemas. 

2-  Aupaented Algol-like Schemas 

We will also consider Algol-like Schemas augmented with features 

designed to make the Schemas more powerful. 

(a) Counters 

A counter is a variable whose value is always a non-negative; integer. 

Counter;- are denoted by c^c,,,... . All counters used by a schema are 

initialized to zero by the start statement.  The statements allowed 

on an arbitrary counter c are: 

(1) c - c+1 

(2) if c =0 then goto L. else begin c - c-1; goto Lr end. 

We use e(c)  to denote the clas. of Algol-like Schemas with 

counters (it includes the subclass of Schemas with no counters), 

^(Ic)  to denote the class of Schemas with at most 1 counter, and 

(3(2c) to denote the class with at most 2 counters. 

(b) Pushdown Stack 

A pushdown stack is a last-in first-out store in which a pair of 

values of both types (data, boolean) can be stacked. Pishdown stacks 

are denoted by s^Sg, ... . All pushdown stacks used by a schema are 

initialized to be empty by the staro statement. A schema with a stack 

_*■ mA  - ^m^ä ÜHk «Hk^ 
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can "push" a data value and a boolean value into the stack, and it 

can "pop" them (if the stack is non-empty). 

The statements allowed on an arbitrary pushdown stack s are: 

(1) push(s,y,z) 

(2) if s = A then goto L 

else begin £OE(s,y,z)j goto L2 end . 

Here, y denotes an arbitrary data variable,  z    a boolean variable, 

and A the empty stack. The statement " £us_h(s,y,z) " adds the current 

values of the variables y,2 on top of the stack s. The statement 

" P0£(s,y,z) " does the opposite: the one data and one boolean value 

at the top of the stack s are assigned to the variables y and z , 

respectively, and these two values are removed (popped) from the stack. 

We use ^(s) to denote the class of Algol-like Schemas with 

pushdown stacks, and similarly for (3(ls) and (3(28) 

(c) Queues 

A queue is a first-in first-out store. Queues are denoted by 

q1.q2,... . All queues used by a schema are initialized to be empty 

by the start statement. A schema with a queue can "add" values at one 

end, and "remove" them from the other. The statements allowed on an 

arbitrary queue q are: 

(1) add(q,y,z) 

(2) if q = A then goto L 

else begin removefq.y.z): goto T,^ pnri  . 

The statement " add(q,y,z) " adds the current values of the triable; 

y,z at one end of the queue. The statement " remove(q)y,z) " does the 

m 
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following: the one data and one boolean value at the end of the queue 

are assigned to the variables y and z , respectively, and these two 

values are removed from the queue. 

We use C<q) to denote the class of Algol-like Schemas with queues. 

(d) Arrays 

An array is a serai-infinite sequence of "locations" (numbered 

0,1,2,... ), each of whicn can take on a pair of values: one data value 

and one boolean value. Arrays are denoted by A ,A^,... . Tue  start 

statement, START(a) , initializes all locations in arrays to the data 

value a and the boolean value true . A location can be accessed by 

subscripting the array with a counter. The statements allowed on an 

arbitrary array A are: 

(1) A[c] - (y,z) 

(2) (y,z) -A[c] . 

We use C.(A) to denote the class of scheraas with arrays. Note 

that the use of an array implies the use of counters, that is, Schemas 

in (3(A) do have an arbitraxy number of counters. 

The class of Algol-like Schemas with any or all these features 

(counters, stacks, queues, arrays) is denoted by C{s,q,A)   . 

3.  Recursive Schemas 

A recursive schema consists of a set of recursive definitions of 

the following form: 

F1(a,a, .. .,truF.,true, ...) where 

h^l'h^  <= if^ty^VF) thenT1(y1,z1,F) else T'Cy^z ,F) 

^-* — '      ^ I I ■■   ^ "  ■ i! mrii 



where y. represents a vector of data variables, I.  a vector of boolnun 

variables, and V  = (F^ .. .,1^)  is a vector or "defined llinction;;". 

Each defined Inunction 1^ may take both data values and boolean values 

as arguments but, for simplicity, we assume that it always returns just 

one data value.  ^(y.^.J) is a boolean term and T.(y.,i.,F) and 

Ti^yi,Zi'F^ are data terms that may use the variables in y. and z. , and 

the defined functions F along with the constant Bymbola a ,a ,... , the 

function symbols f^f^,... , and the predicate symbols p ,p ,... . 

The value of the schema for any given interpretation is the value 

of F1 with all its data arguments set to the value of the individual 

constant a , and all its boolean arguments set to true. During 

computation, all arguments are passed by value, i.e., the innermost 

function nails are evaluated first. Note that there are no "global" 

variables, and function calls cannot have any side effects, they simply 

return values. 

tfc- use C'(R)  to denote the class of all recursive Schemas. 

h.      Equality 

We also consider schemas in which every boolean term a   may have 

the form ^ = Tg or -x 1  / i^    in addition to the earlier possibilities. 

When equality is allowed in a class (3{...) , we denote the 

augmented class by C<...,=) . Thus, we use (3(=)  to denote the class 

of Algol-like schemas with equality, C.(c,=) to denote the class of 

Algol-like schemas with counters and equality, C<R,=) to denote the 

class of recursive schemas with equality, etc. 
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5-      Example 

Any two Schemas    S    and    S'    are said to be equivalent  if for every 

*/ interpretation    of    G    and    G*   ,-'   either both tchetnas diverge (i.e., 

loop forever),  or both halt with the same output. 

Consider the following recursive schema 

S0:    F(a)    where 

F(y)  <= if p(y)  then y else t{¥Mg{v)))     . 

Note that if we have an interpretaticn of   t50    for which 

p(g (a))   ■ true    for come    n > 0 ,  and 

P(ß:i(a))  - false    for all    i < n , 

then 

P(a)  = f(a,f(g(a),f(r2(a),...,f(gn-1(a),gn(a))...)))     ■ 

Below we exhibit some Algol-like schemas thet aic equivalent to Sn . 

To simplify the programs wa use an extended Algol-liKe language, using 

. . .r'^lar while ... do ...  statements, goto statements and if ... then ... else 

statements. All these statements can be expressed easily in terms of 

our primitive statements. We allow also the statement c - c. which 

can be replaced by 3egal statements for counters by adding one additional 

counter. 

For clarity, we add a few comments in the schemas below. Gince 

boolean variables play no role ir this example, we ignore their presence 

in the comments. 

*7 "  
-'   i.e.,  the interpretation  includes an assignment to all constant, 

function und predicate symbols occurring in    G    or in    o'   . 

^■M^^MMte^i mM 



(a)    A ample echana 

G1:    CTAi?r(a); 

while -« vb'i) do yj^ - eiyj); 

[comment: y = g
n(a)} 

L: 11 P(yit) then HALTfr.) 

else begin y2 - ft; y^ ^ g(yu); y^ - y^ end; 

{.ccmment: in the 1-th loop (1 < i < n) 

y2 = R (a), y3 = g
i(a), y|( = g

i(a)] 

while -" PCyj) ^2 begin y2 - 6(y2); y. - g(y^) end; 

(comment: in the i-ch loop (1 < 1 < n) 

y2 = Ö
ri"1(ft), y^ = gn(a), y^ .. g^a)} 

y1 - fCyg^i); 

goto L . 

(b)    A schema with counters 

S2:    START(a); 

wh±le "■ PCy^ §£ be^g y1 - g(y:); c^^ - c.+l end; 

[comment:    y1 = gn(a),   c1   .  n] 

L:   i£ Cj^ = 0 then IIAI/^y ) 

eli^e begin y2 - a;  c}  - Cj-1; e    •- ,.■    pn,|; 

while c2 / 0 do begin y2 - g(y2) ; c2 - c,,-! end; 

[comment:    in the i-th loop (1 < i < n) 

yg = e ' (a)» Ci - n-lj 

y1 - f(y2*y]L); 

goto L  . 

]/) 
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(c)    A schema with a pashdnwn stack 

.%:    STARr(a); 

while n p(y1)  do begin Qushicy^y.) ;  yi ^ tfyj   emi; 

icomment:    y1=gn(a),  B » (a,g(a), .. .^^(a))) 

L:   if s = A then UALT^)  else Bppfe.y^.z)! 

[comment:    in the i-th loop (1 < i < n) 

y2»gn" (a),   8     (a,,:(a),...,/:
I1-:i'J-f,.J.))] 

goto I,    . 

(d)    A schema with an array 

C^:    STAKr(a); 

^hile -, pCy^  do be^in A[c J - (y^z); c - c+lj ^ - g(y1)  end; 

{comment:    y1 = gn(a), A[0] -a, A(l]-g(a), ... 

AU-lJ-jrta), c = n} 

L:   if c   - 0 then HALTCy,) 

else be^n c - c-1;  (y2,2)  - A|c|  end; 

(comment:    In the i-th loop (1 < i < n) 

yi *" 1'(y2,yi^; 

goto L     . 

11 
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(e) A schema with equality 

S : START(a); 

while -, p(y1) do y1 - s(y1); 

Yo *- Yi ; 

{comment: y^^ = y2 = g
n(a) } 

L: if y2 = a then HALTCy^ else y, - a; 

while g(y5) / y2 d£ y3 - g(y ) ; 

Yo - y-^ > 

[comment:     in the i-th loop (1 < i < n) 

n-i. 
yp = y. - g    (a)} 

yl " f(y2'yi)5 

goto L 

Part II.      On the Power of Classes of Schemas 

Let   C^    and   fl,      be two classes of Schemas.    We say that 

(a) C^    is more powerful than   q.    (notation:    Cs   >(^2)     if for every 

schema in   Ü.      there is an equivalent schema in    (L   , 
1 

(b) C^    and   g-g    are equally powerfiQ. (notation:    (L   5 fl^)     if 

C^ > C^    and   C^ > CJ»,  ,  and 

(c) C^    is strictly more powerful than   O     (notation:    C».  > CH)  J 

if   C^ > C.2    but    OifiCtQ  • 

1.      The Comparison Diagram 

We now consider tne interrelations between the classes of schemas 

we have defined. 

12 
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Intuitively, anything thai can be done jteraLively can also be 

done recursively. In other words, we would expect that C-(R) >(3,() ,  and 

C3-(R, =) >(•(=) . That these are indeed true was shown by McCarthy [I962]. 

Also, as mentioned earlier, one expects that recursion is strictly more 

powerful than iteration. Paterson and Hewitt [1970] showed that there 

are certain recursive Schemas for which there are no equivalent simple 

Algol-like Schemas, i.e., (^(R) >C-() , and also C3<R>=) > ^{-)   • 

Another intuitive notion is that recursion can always be replaced 

by a pushdown stack. Thus, if our Schemas in c-(R) and C.(ls) do 

capture the intuitive power of recursion and of a pushdown stack, wo 

would expect that C.(R) < c-(ls) , and similarly, (^(R,-) <C.(ls,-) . Those 

were shown to be true by Hewitt [ 1970 | and by Constable and Gries [1972]. One 

should also ask whether a pushdown stack has power strictly greater than 

recursion, or whether they are equally powerful. To state this in 

another way. we observe that recursion involves the use of an implicit 

stacking mechanism. The question is whether or not this implicit stack 

really utilizes the full power of a pushdown stack.  Chandra [1975] 

answered this by showing that C-(R) - C-Cls) , and that ö(R,=) sC^ls,^ .^ 

Paterson |unpublished memorandum | and Garland and Luckham [1971] showed 

that e.(c) > die)   . Plaisted |1')7''| proved the curpricinß result that the 

addition of just one counter to simple Algol-like Schemas adds no power, 

i.e., (3(lc) s (3() . However, the addition of a second counter adds 

power, i.e., C-(2c) >(3<lc) ; and after that, the addition of a third, 

fourth, fifth counter, etc., does not increase the power. 

It can be shown that the power of recursive Schemas is not affected 
by the addition of features such as:  (a) recursive definitions 
which consist of simple Algol-like programs with global variables 
and local variables as well as recursive calls, or (b) defined 
functions which return not just one data value, but a vector of data 
and boolean values. 

13 
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Constable and Gries [1972] introduced. Schemas with arrays and 

used a problem suggested by Paterson and Hewitt to show that C,(A) > ;3(R) 

Chandra and Manna [19J2]  observed that the use of equality increases the 

power of Schemas. 

The interrelationships between the various classes of Schemas is 

shown in Figure 1.  In the figure (and all following figures), if there 

is an ascending arc (or a chain of such arcs) leading from a class (L 

to a class ^ , and Cg is above &    in the figure, it means that 

" a, is a strictly more powerful class than fl. "•  If two classes, 

Cj and Cj, , are not linked by an accending chain of arcs, then the 

classes are unrelated, i.o., C^fcC*,    and Öp £ C^   . For example, 

(3(=) ^C'(A) , and e.(A) ^ C<=) . In other words, there is at least 

one schema in fl,(=)  for which there is no equivalent schema in (3(A) , 

and vice versa. Details of all the results suggested by Figure 1 can 

be found in Chandra's thesis [1975]. 

From Figure 1 it is apparent that Schemas with arrays and equality 

act as a "maximal" class.  In fact, any arbitrary schema with 

equality, counters, stacks, queues and arrays can be effectively 

translated into an equivalent schema witli equality and one army. 

Also, one pushdown stack has the same power as recursion, but two utaekü 

are strictly more powerful -- they are together as powerful as arrays. 

Even the seemingly "weaker" class with one pushdown stack and one counter 

has the same power as arrays. Observe that a queue is a more powerful 

feature than a stack; actually, a queue is as powerful as two stacks 

(addition of more stacks or queues adds no power) . 

Ik 
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C-(A,=) 

e(c,=) 

ö(c) 

(3.(R,=) 

I 

cO =-    e(lc) 

C(c) =    C(2c) 

e(R) =    C{lv.) 

r;.(A) •'.(.k-,,l<;) (3(:J£l)            C(lq)            <'-(.l/\)            ^ "•(:■,< l,Aj 

.•im!   . Jim: laf.l.v.  when wc ■ MM.  iMiua. 1 ;i t,;/   Lo  micli   n l.ai'.i' 

C(-) s   C(lc,=) 

C(c,= 0 3   C(2c,=) 

^(R,= 0 s   C(ls,=) 

C(A,= 0 s   e(ls,lc,=) =    (3(2s,--)     s   C(lq,=)     =   C(M,=) s    C(.s,q,A,=) 

Figure 1 

b 
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It Is InLcreüiitu; bo Luhcl, Mio vrl,.!.-,.; of Ki,-ii.:n- l IT. anoLlicr way, 

as shown in Figure 2. (Note that Figures .1 and 2 are isomorphic; that, 

is, they represent the same  relationships). This figure fan be treated 

as a unit cube where the axes are labeled: 

x-axis: "add a stack and delete .. counter", 

y-axis: "add a counter", and 

z-axis: "add equality tests". 

ö(lB,lC,=) 

C(.lc, ) 

0(18) 

2.  Some Proofs 

To illustrate how the results of Figure 1 are proved, we give an 

intuitive idea of the proofs for the results indicated in Figure J. 

16 
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(3(A) 

(^(c) ö(R) 

d) 

Figure 5 

In the following we use the result that for any classes    C-   ) d-, > 

Cj    of Schemas,  if_ S^ < (32 ^ C*    and   C3h < (3*    then   ös < C»  •    This 

follows from the fact that  if   C^ < Cg £ C-.-    then there is a schema    S 

in    Cv    for which there is no equivalent schema in   Cj,  >   and hence no 

equivalent schema in   &,   .     This implies that    Cv ^ C^   •     Since   C*  <C* t 

it  follows that    C--,  < C,   .     Similarly we have that if_ C^   > <3p ^ C-; 
^ 

and g. >(3^ then C*.  > C,   .    Thus, to show that (3(A) > (3(R) >(3() , 

(3(A) >e'(c) >(3() , and that (3(R) and (3(c) are unrelated, it suffices 

to prove that (3(A) > C-(R) ><3() , (3(A) > (3(c) >(3() , and that (3(R) 

and (3(c) are iinrelated, i.e., (j(R) ^C<C) und (j(R) ^ (3(C) . This 

follo\/s because 

(3() <e-(c) ^C^R) and  (3.() < C-(R)  imply C{)  < 0(R)  , 

ö() <(3(R) ^C(c) and  c() < (3(c) imply C{)  < C<c) , 

(3(A) > (3(c) ^ (3(R) and (3(R) < (3(A)  imply (3(R) < C3(A)  , and 

C.(A) >(3(R) ^C(c) and C^c) < C<A)  imply (j(c) < (3(A)  . 

It is trivial that (3(A) > (3(c) > GO  since every schema in (3() 

is in (3(c) , and every schema in (3(c) is in C(A) . We also have 

17 
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G.(R)  >£()     cince every simple Algol-like schema can be  translated 

into an equivalent recursive schema by associating a defined fumction 

with each statement in the Algol-like schema.      (3(A)  > C<R)     can be 

shown by simulating a pushdown stack with arrays using standard 

call-by-value ALGOL compilation  (booleans are used to represent  the 

returr address). 

The interesting part  is to show that   C-(R)    and   (3(c)     are 

unrelated,   i.e.,  to exhibit a schema    S1    in   c(R)    for which there 

is no equivalent schema in    (3(c)   ,  and a schema    S      in    (3(c)     for 

which there is no equivalent  schema in   (j(R)   . 

(a)    Consider the following recursive schema (in   (J(R)   ): 

S,:    F(a)    where 

F(y)  <^ if p(y)  then y else f(F(e(y)),F(h(y)))     . 

There is no schema in   C{c)     equivalent to this.    The reason is that 

the computation requires storing an arbitrarily large number of 

temporary data values,  rfhereas  every schema in    Q(c)    has a fixed 

number of data variables. 

Consider a class of interpretations    [ij    having the following 

property:     for every    I    ,  n > 0 , 

(i)      distinct terms yield distinct data elements under    I    , and 
n 

(ii)    p    is true only for the terms that contain    n    occurrences 

of the functions    g    and    h    applied to    a  . 

The schema    S      on the interpretation    I      computes the term    T   (a)    where 

T0^')   - y    i    and 

T1+1(y)   - f(T.(g(y)),T.(h(y)))     . 

IS 
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For example, S1 under I1 and Ig computec the terms f(g(a),h(a)) 

and f(f(g(g(a)),h(g(a))),f(g(h(a)),h(h(a)))) , respectively. These 

terms can also be represented as binary trees as shown below: 

T1(a) : f(g(a),h(a)) is 

and 

g(a) h(a) 

T2(a) f(f(g(«(a)),h(g(a))),f(g(h(a)),h(h(a)))) is 

(6(a))    h(g(a))    g(h(a))    h(h(a)) 

Suppose there is a schema    S    from   0(c)    that is equivalent to    S 

Without loss of generality we assume that    S    has no symbols other than 

a ,   f ,  g , h   and    p ,  that the only assignments that use    f   have the 

form    yi - 
f(yj>yk)   j  and that halt statement:; have the form    HALT(y.)   . 

Conoider the computation of   S    under the interpretation    I     .    Since   S 

is assumed to be equivalent to    ü1    it computes the term    t   (a)    which 

can be represented as a perfectly balanced binar:/ tree of height    n   . 

Now we consider the computation of arbitrary binary trees in which each 

node corresponds to a distinct value and where in a single step at most 

one binary function can be applied.     It is well known,  and can be proved 

readily by induction,   that the number of variables      #(T)     required to 

10 
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compute the term corresponding to such a binary tree T is giver, by 

#(0  = 1 , and 

= if W{\)  =#(Tj) then #(1^+1 

else maxWSj),f{1!2)) 

This tells us that n+1 variables are required for computing the term 

T (a) 
nv ' 

For example, three variables are required to compute Tp(a) : 

y-L - g(g(tt))  ; y2 - h(g(a))  ; y1 - f(y1,y2)  ; 

y2 - g(h(a))  ; y, - h(h(a))  ; y2 - f(y2,y5)  ; 

y-L - f(y1>y2) • 

Now, if the schema S has, say, m data variables, then for the 

computalion of T  under r , S must have at least rrH-1 data r m        m 

variables — a contradiction. Thus no schema in .3(c) is equivalent 

to S. • 

(b) Consider the following problem: "given a constant a ,  unary 

functions f,g , and a predicate p , find an element x of the form 

f1(gl'(a)) , i,j >0 , such that p(x) is false. If no such x exists 

then the schema loops forever". In the following we refer to this 

problem as the witch-hunt problem. 

It is easy to see that Schemas in (3(c) can solve this problem. 

The following is one such schema: 
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STAKT(a); 

Ll: C2 - C1; yl " a; 

L2: c3^c2; ^ yl5 

while c^ / 0 do begin c - c,-l; y2 - f(y ) end; 

if -, p(yg) then HALT(y2) ; 

if c2 / 0 then begin c - c -1; goto L end; 

o1 - c1+l; 

goto L, 

The idea is that for a given c ,  c = 0,1,^, .^ ••• (L-,-loop) , v/o 

check the value of p for all possible terms of the form 

C2    Cl"C? 
Yg = f is (a))  in the following order: c = c ,c -1, .. .,1,0(L -loop) . 

However, no schema in (3(R) can solve the witch-hunt problem. 

Intuitively, the reason is that no schema in C^R)    can compute all 

terms of the form f (g (a)) , in any order. For suppose there is a 

schema S in (3(R) that solves the witch-hunt problem. Then, without 

loss of generality we can assume that S haa no predicate other than p , 

and that defined functions in S have no boolean arguments. Let n 

be the largest number of arguments of any defined function in S. 

Consider an interpretation I,    for which the predicate p is true true 

for all terms. We also require that distinct terms yield distinct data 

elements under ^x.rne >  and we claim that S cannot generate all the 

terms on the n+1 columns described in Figure h . 

The .j-th column, 0 < j < n , consists of all terms f (g^(a))  for 

all i > 0 . To show this, we divide all terms into 2n+3 sots A. , B , C 
3      i 
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0 A. 

g(a) 

B. 
0 

g2(a) 

B, 

f(a) f(g(a)) 

f2(a) f2(g(a)) 

f5(a) f3(g(a)) 

A a) fNg(a)) 

f(g2(a)) 

f2(g2(a)) 

f3(g2(a)) 

f,+ (R2(a)) 

gn(a) all other 

terms 

Bn 

f(gn(a)) 

f2(gn(a)) 

f5(gn(a)) 

f\gn(a)) 

Figure k 

for    0 < j  < n   .      The set    A,    consists of the single term    gJ(a)   , 

the set    Bj    consists of the entire column of terms    f^g^a)) 

for    i > 0 ,  and the set   C    is the "catch all" consisting 

of all other terms.    Now,  as the schema    S    must loop on the interpreta- 

^ic"1    Itrue  '   anci there are only finitely many sets,  there must be some 

defined function    Fk    that calls itself recursively such that each one 

of its argmments is in the same set as  in the earlier call.    Then,   as 

the predicate tests are always true,   the defined functions called 

between such two calls of    P      are repeated in the same order, and with 

the arguments  from the same sets as before.    Hence, there is at least 

one column,   say    j    ,   such that no argument of these calls of   F      is 

from it.     Therefore only finitely many terras from column    j      can be 

22 

' 

-       - t     m    t 



reached during the computation,   i.e.,  there is at least one term,  say 

il    jl 
f    (g    (a))   *   that is never test-jd. 

Now we chfnge the interpretation    I. slightly to    I „+ ro fpug 

in which    p    applied to all terms is true except that    p(f    (g    (a))) 

is false.    Then the computation    f    G    on the interpretation    ^ot sc true 

is the came as the computatic.    r     I, >   i-e«,    S    will loop on 

I .    But as    Ü    is assumed to solve the witch-hunt problem, not so true 
ll    •il it must halt with output    f    (g    (a))     -- a contradiction.    This proves 

that no schema in   CiR)    can solve the witch-hunt problem. 

It is  interesting to rote,  however,   that the witch-hunt problem 

can indeed by solved by some Algol-like Schemas with equality and no 

counters,   i.e.,   by Schemas  in    (U~)    {see Chandra [197^]) • 

5.      Number of Variables and Depth of Data Terms 

One can investigate further the effect of the number of data 

variables on the power of Schemas.    It can be shown,   for example,   that 

*/ for every    n  ,    n > 0  :-' 

(a) '3(R,  n var)     >   (3(n var) 

(b) C^R,  1 var)    ^   C^n var) 

(e) <3(R,  n var)    ^   3(n+l var) 

This  implies the relations shovm in Figure 5«    Recall that if there is 

an ascending arc leading from any class    (3-,      to another class    (J- 

^l"v it means that    fls -< 

•****I~'M<W* 

Here,   " n var "  indicates that the schema has at moi;t    n    data 
variables   (in Algol-like Schemas)  or at most    n    data arguments 
for defined  functions  (in  recursive Schemas). 
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Simple Algol-like    3 

(no. of variables) 

2 

Recursive 

(no. of variables) 

0 var 

Figure 5 

(a) The result that ^(R, n var) > £(n var) follows by the standard 

process of translating a simple Algol-like sehen.i into an equivalent 

recursive schema.  (b) The recursive schema B. above is in 

C-(H, 1 var) , but there is no schema in -^(n var) , for any n > 0 , 

which la equivalent to Z1  .       (a)    lo show that there ie  a cchemu jn 

C{n+1  var) which is not equivalent to any schema in fl^R, n var)  we 

consider the following problem. 

"Find an element x of the form f^g^x)) , i > 0 and j < n , 

such that p(x) is false." We refer to this problem as the restricted 

witch-hunt problem. The following schema S. in &(n+l var)  solves the 

problem. 
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S,: START(a); 

y2 - ßiy^; y;- - g(y2); • • •; yn+1 - g(yn); 

L: if -, p(y1) then HALTCy^ else y1 - f (y^ ; 

11 -i P(y2) then HALT(y2) el£e y2 - f(y^); 

if -, p(yn+1) then HAlT(yn+1) else yn+1 - f (y^); 

goto L 

I Our earlier proof shows, however, that there is no schema in (3(R, n var) 

which solves the problem, and therefore there iu no schema in (3(R, n var) 

which is equivalent to S . 

i There is no need to investigate how the number of boolean variables 

affectJ.the power of the Schemas, since it can be shown that boolean 

variables do not add any inherent power to Algol-like Schemas or to 

recursive Schemas (with or without equality).-' 

We can further consider how the depth of data terms affects the 

power of schemas. The depth  |T| of a data term T  is defined as 

follows:   |a.| =0, [yj =0, and | f. (T^ .. .,Tn) | = 1 + ma/^ l^j, ..  ITJ ] 

Trivially,—'    c(o var, Ü depth) = C,(n var, 0 depth) < C(0 var, 1 depth) 

for all n . It can be shown that for every n > 0 and d > 0 , we 

have: 

(a) £(n var, d+1 depth) £   e.(n+l var, 1 depth) ,  and 

(b) 2(n+l var, d depth) £ (3(0 var, d+1 depth) . 

*r Note, however, that owing to the particular way we introduce 
pushdown stacks, queues and arrays, at least one boolean variable 
is required to make use of these features. 

— Here " d depth " indicates that the schemas use data terms of depth 
at most d . 
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These results imply the relations described in Pißure 6. Note that the 

figure indicates, for example, that CO var, 8 depth) and 

0(2 var, 3 depth) are unrelated. 

(a) The first result can be proved by using the restricted witch-hunt 

problem. 

(b) The second result can be proved by observing that the following 

schema S^ in -3(0 var, d+1 depth) is not equivalent to any 

schema in (3(n+l var, d depth) : 

SjJ     START(a); 

HALT(f(fJ(a),f^(a),...,f^2(a)))    , 

„d, 
where    f. (a)    means    f^    applied    d    limes to the constant    a 

n var d depth 

0 depth 

Figure 6 
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h.      Discussion 

It is reasonable to ask what it is about the various features 

we have discussed that makes one class of Schemas more powerful than 

another. An observation of the arciunents involved in proving the 

interrelationships shown in Figures 1 and 2 suggest three intuitive 

factors that determine the power of the various features. 

(a) The amount of data space (x-axis of Figure 2 -- "add a stack 

and delete a counter").  Simple Algol-like Schemas, and even those 

with counters and equality, have a fixed amount of data space. This 

limitation is shown by the fact that these Schemas just cannot compute 

certain terms which are too large. The additions of a data variable 

to simple Algol-like Schemas increases the power, as may be expected. 

Recursive schemas act as if they had an unbounded amount of data space 

available to them, as do schemas with stacks, queues or arrays. 

(b) The control capability (y-axis of Figure 2 -- "add a counter"). 

The control capability of a schema signifies the ability of the schema 

to decide what to do next. Boolean variables and counters are examples 

of features that help in making such decisions. Boolean variables 

however add no inherent power, while- two counters add as much control 

power as one might want. A pushdown stack provides, in addition to an 

unlimited amount of data space, some control capability because a stack 

can simulate a counter, but it does not have as much control capability 

as two counters. A queue, on the other hand, provides in addition to 

unlimited data space, as much control capability as two counters. 

2? 

■ 

    -  —  .. ^- . MMMflM 



One can also consider other progranuning features that provide 

control capability.    One such example is the boolean stack-^ which is a 

pushdown stack consisting entirely of booJean values  (see also Green, 

Eispas and Levitt  [l1;?!]) . 

(c)     The structure of terms     (z-axis of Figure 2    - "add equality") . 

In our discussion we observed that the addition of terras containing 

equality increases the power of scheraas.    This illustrates that  if we 

enrich the structure of terms allowed we may increase the power of 

Schemas.    On the other hand,   if we restrict the structure of terras, 

such as by limiting the depth of data terms, we may decrease the power. 

*r A boolean stack is strictly more powerful than one counter but 
strictly less powerful than a pushdown stack or two counters. Two 
boolean stacks, however, are just as powerful as two counters (as 
is also one boolean queue) . 
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